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A model potential calculation of the first derivative of the electronic polarizability with re-
spect to an atomic displacement for Be, Mg, and Zn is presented. The magnitudes of these
derivatives, which govern the intensity of the first-order Raman effect in the corresponding
crystals at the argon-ion laser wavelength of 4880 .&, are 39.7 A? for Be, 11.2 A? for Mg, and
18.9 A2 for Zn. The dependence of the real and imaginary parts of the polarizability derivative
on the frequency of the incident light has also been calculated for these crystals.

Recently, Parker, Feldman, and Ashkin' have
reported observing first-order Raman scattering
from optical phonons in the hexagonal metals Be,
Mg, and Zn. A theory of the Raman effect in met-
als has been presented by Mills, Maradudin, and
Burstein.? However, in this theory the first deriv-
ative of the electronic polarizability of the metal
with respect to a nuclear displacement, which gov-
erns the intensity of the Raman scattering of light
by one-phonon processes, was left as a parameter
of the theory.

In this paper we present a calculation of the first
derivative of the electronic polarizability for an
elemental hexagonal close-packed (hcp) metal and
present results of the calculation for Be, Mg, and
Zn.

The electronic polarizability of a crystal P,z can
be expanded in powers of the displacements of the
atoms from their equilibrium positions as

Pos(w) = PQ(w) +20 By (w|lk)u, k) +22-, (1)
. lky

where w is the frequency of the incident light, and
uy(lx) is the a Cartesian component of the displace-
ment of the kth atom in the /th primitive unit cell.
We neglect the dependence of the electronic polar-
izability on the wave vector of the incident light.
It is with the calculation of the P,g,,(w IlK) that we
are concerned in this paper.

If we divide P,z by the volume of the crystal €,
we obtain the dielectric susceptibility of the crystal

Xas(@)= QB (w0)+ Q1 X Pop, (0| l)u,IK) + -2+ .
Iky (2)

Because of the translational periodicity of a crys-
tal, Paﬁ’,(w |lK) is independent of the cell index [.
In what follows we will denote this coefficient by
PD‘B’,(K), where to simplify the notation we suppress
its explicit dependence on w.

The translation vectors for crystals of the hep
structure are

a= (%\[ga, - %a, 0), -‘3= (0;a9 0), c= (O; 0, C), (3)

where a and ¢ are the two lattice parameters needed
to describe the crystal structure. The Cartesian

components of a general reciprocal-lattice vector
are

G,= (26, + G,)21/V3a, G,=Gy2n/a , G,=Gg2n/c , (4)

where Gy, G;, Gg are positive or negative integers.

It is convenient to choose the origin of coordi-
nates midway between the two atoms in a primitive
unit cell, so that the coordinates X(+) and X(-) of
these two atoms are

%(+)=(a/2+3,0, ¢)=T=-%(-). (5)

It follows from infinitesimai translational invari-
ance that, for crystals of the hep structure,

PaB,7(+) = "'PaB,‘r(_)° (6)

In addition, from the transformation properties of
P,s,,(+) when the crystal is subjected to one of the
operations of its space group, it follows that this
third-rank tensor has only one independent nonzero
component for crystals of the hcp structure:

Pxx,x(+) == va,x(+) == va.y(+) == Py, (+)' (7)

Combining these results we find that we can expand
the change in the dielectric susceptibility due to
atomic displacements 8Y,,(w) in the form

()= Q71 2 Pry x ($) s (14) =, (1)1, 8)

to first order in the displacements.

To simplify the calculations, we assume a dis-
placement pattern of the form w(+) = -0@-) =a,
where d is independent of I. Such a displacement
patterndescribes a relative rigid-body displacement
of the two sublattices with respect to each other, asina
4 =0 optical mode. It does not alter the periodicity
of the crystal, just the structure of a primitive unit
cell. The change in the susceptibility due to such a
displacement pattern is therefore

Oxx x(w) =29 lpx %, % (+)d,, (9)

where @, is the volume of a primitive unit cell.

We treat the metal as an electron gas which is
only weakly perturbed by the periodic potential due
to the positive ions. The bare-ion potential is rep-
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resented by a weak model potential.

The Hamiltonian for the many-particle electron
gas of the crystal perturbed by a spatially uniform
electric field is

H=T, +Voi-01+ Ver-1on (10)

== 218, - K1),
c n

where e is the magnitude of the electronic charge,
m is the electronic mass, and p, is the momentum
operator of the nth electron. By calculating the ex-
pectation value of the total current operator, — (e/
m) (B, +(e/c)A,), with respect to the time-depen-
dent eigenstates of the Hamiltonian (10), one finds
that the dielectric function is

drely 4re®
€ap(w) = B45 - g Das~ I

5 {(olP AMIEADRCIEAT (uIPaIO>}
= ).8o— 8, +hw +ilie 50— 8~ iw—ifie

(11)
where § is the crystal volume, 9t is the number of
valence electrons in the crystal, P, is the a Carte-
sian component of 3,P,, and {|p)} and { 8} are the
time-dependent eigenstates and eigenvalues of the
Hamiltonian (10) in the absence of the last term.
The perturbation is turned on adiabatically with a
factor e®*

Regarding the electron-ion interaction as a weak
perturbation, we will expand €,5(w) in powers of this
interaction. We write the electron-ion interaction
Vel-lon as

-(l)), (12)

Vei-ton= E Z) v (-fn - ;{(ZK)
n Ik

where U(¥) is the bare-ion potential, T, is the posi-
tion of the nth electron, and X(Ix) is the equilibrium
position of the xth atom in the lth primitive unit

cell. We may write this as
v Hon:zz; U(C—l)e-ta-i(zx)e-m-mm)eta-i‘n
¢ dn 1k
=2 V@e't (13)
n
where U(q) is
U@=(1/Q) [ a®r U@e T, (14)

We denote by {| 1)} and {E,} the eigenstates and
eigenvalues of the Hamiltonian containing only elec-
tron-electron interactions. These states are also
eigenstates of P, with eigenvalue P,,, and P, acting
onthe ground state |0) has eigenvalue zero. Omitting
the terms which are unmodulated by atomic displace-
ments, the dielectric function becomes

4ﬂe Z Py, Pa, | (u V@5, e 10) 12
(Eu, _EO)

X
(Eu —Eo

which is exact to second order in V().

€aB (w)

1 1
—Tiw—ilic 'E, —Eo+i'iw+ih’€)’
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The longitudinal dielectric function of an interact-
ing electron gas obtained from response to a test
charge is®

1 47e® .
mcaniir 2l it

: 1 1
X(E,, —Eq—Tiw—ili€ ' B, — Eq+ hiw + ift€ ) :
(18)
By comparing Egs. (15) and (16), we obtain for the

real and imaginary parts of the dielectric function

defined by €,5(w) = €2 (w) + i€ 2(w)

eD(w)= ——z—rzl V()| %4° g0s
1 1
XRe(«a,"w) -T0)’

€ (w)= -—-z—r 2 | V(8)|%4°q0gs Im (ﬁ) .
(17b)

(17a)

The result (17b) for €2(w) was obtained previously
by Hopfleld The contribution to the real and imag-
inary parts of the electronic susceptibility which is
modulated by nuclear displacements is obtained by
dividing Eq. (17) by 4.

If we now consider the atomic-displacement pat-
tern discussed previously, we may write V(q) to
first order in d as

V() =a@W(E) [cosq. T-§.dsing. 7] , (18)

where W(§)=2NU(3G) and A(J) is equal to 1 if () is
areciprocal-lattice vector, and zero otherwise. It
we denote the real and imaginary parts of P,, .(+)
by P and @, we have from Eq. (9), where W(q)

= ZNU( a.),

9 - -
= M%ZT 4? | W(G)|2G%G? sin2G

' Re(-«e( ,w)  €(G,0) ) (19a)
Q - .
Qza_,j{zwj— % | W(G)|2G%GS sin2G
- 1
+T Im (s(a, w) ) ’ (19b)

In the evaluation of these sums for Be, Mg, and
Zn, we used the dielectric function calculated by
Lindhard’ on the basis of the random-phase ap-
proximation. The quantities W( q), which were cal-
culated using the bare-ion part of the model poten-
tial given by Animalu and Heine, ® are tabulated in
Table I. The constants used are shown in Table II.

The values for P and @ were calculated for Be,
Mg, and Zn as functions of w for 0<7Zw<10 eV.
For small values of w, P~1/w?and @~1/w?.
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FIG. 1. Variation of P(%w)? with incident-photon energy

for Be, Zn, and Mg.

Therefore, we plot P(hw)? and Q(fw)® in Figs. 1

and 2. It is noted that a sharp break occurs in these
curves in the region of 2—4 eV. The real part of
the Lindhard dielectric function has an inflection
point with infinite slope at a point where the photon
energy equals the kinetic energy difference between
an electron of wave vector g — gr and an electron of
wave vector gz, where g is the magnitude of the
Fermi wave vector. This property of the dielectric
function causes the contribution from each recipro-
cal-lattice vector to have a sharp break in the curve
at this photon energy. As it happens, the breaks
noted come from the next-nearest-neighbor contri-
bution. For Mg and Zn, a slight peak from the
third-neighbor contribution is also evident near 8
eV,

TABLE I. Model potential parameters W(é) used in
the calculation of the Raman tensors for Be, Mg, and Zn
(in Ry).

Gy, Gy, Gy Be Mg Zn
100 0.073 0.012 0.006
101 0.105 0. 040 0. 049
102 0.062 0. 042 0.082
103 —0.015 0.007 0.058
200 —0.021 0.001 0.026
201 —0.025 —0.003 0.021
202 —0.026 —0.008 0.008
104 —0.020 —-0.009 0.015
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TABLE II. Constants used in the calculation of Raman
tensors for Be, Mg, and Zn.

z a(R) c(R)
Be 2 2.287 3.583
Mg 2 3.203 5.196
Zn 2 2.6585 4,9342

We can compare our theoretical results with the
experimental results of Parker et al., " who found
that at a laser frequency of 4880 A (2. 54 eV)

| P+iQ| o/ |P+iQ| =0.08-0.13 (expt).  (20)

In another'paper, 8 the present authors have made an
ab initio pseudopotential calculation of the Raman ten-
sors for diamond, silicon, and germanium. The
value of P(Q=0) for silicon at a laser frequency of -
4880 A was found to be 51.5 A%, Using the values
from Figs. 1 and 2, tP+ iQ| 5e=39.7 A% and the
corresponding theoretical value of the ratio in Eq.
(20) is

|P+iQ|p, / | P+iQ|sy=0.77 (theor). (21)

This differs from the experimental value by about

a factor of 6. The values of |P+iQ| for Mg and

Zn are 11.2 A2 and 18.9 A% respectively.
Inassessing possible sources of error inthe pres-

ent calculation, we note that in carrying out the

expansion of €,5(w) in Eq. (15) to second order in

V(é), we have neglected the terms of higher order

in V(é). A calculation of the contributions to P and

@ at an incident frequency of 2.5 eV which are of

third order in V(ﬁ) shows that they are smaller than
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FIG. 2. Variation of Q(%w)® with incident-photon energy
for Be, Zn, and Mg.
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the contributions of second order by a factor of
0.1 V(_é)l max/ Er, where Ep is the Fermi energy.
This factor is less than 0. 01,

It should be noted that in the sums in Egs. (19)
the terms corresponding to the first two or three
nearest-neighbor reciprocal-lattice vectors domi-
nate. As it turns out, the contribution of the near-
est-neighbor reciprocal-lattice vector comes in with
a sign opposite to that of the next two nearest neigh-
bors due to the factor sin(2G-7). Also, for each
metal the magnitude of the nearest-neighbor re-
ciprocal-lattice vector is close to the value of ¢ at
which W(q) has its first zero. As a result, com-
paratively small changes in the bare-ion model po-
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tential can significantly affect the contributions to
P and @, even to the extent of changing the signs of
these contributions, decreasing thereby the value
of |P+ iQ

The principal source of error in the present calcu-
lations is probably to be found in the choice of a
bare-ion model potential. It is possible that a dif-
ferent choice from that made here could lead to an
improvement in the agreement between theory and
experiment. Nevertheless, it is still gratifying that
the simple calculation described here is capable of
yielding values of the Raman tensors of Be, Mg, and
Zn which are in order-of-magnitude agreement with
such experimental values as exist.
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Correlation between points on a conductor surface may be important in explaining the rela-
tively large specularity parameters attributed to measurements in single-crystal samples. An
expression for the size effect in the electrical conductivity is obtained that takes into account

the effect of weak surface autocorrelation.

The expression shows that, as expected, the correla-

tion increases the electrical conductivity. It also shows that even an angle-dependent specularity

parameter may not be an adequate description in the sense of the Fuchs model.

Numerical esti-

mates are given for the size effects due to surface roughness and autocorrelation. These are ex-
plained in terms of the competing effects of flux conservation and surface asperity slopes.

Most descriptions of the effect of surface scat-
tering of conduction electrons have employed the
constant specularity parameter p as introduced by
Fuchs.! It has generally been recognized that a
constant p is not likely to provide a realistic de-
scription of this process, except under simplifying
conditions. 2 If the surface scattering is due to
random surface chargés, the specularity param-
eter may depend on the angle of incidence of the
electron’s wave vector and the surface and may

also differ from the magnitude expected on the
basis of the reflection coefficient.® Surface rough-
ness also is expected to produce an angle-dependent
specularity parameter.* In addition, the degree

of correlation between the heights of various points
on the surface should have an effect on the detailed
nature of the portion of the scattered flux usually
described as “diffuse.” With increasing autocor-
relation of the surface heights, the “diffuse” flux
should have a narrower distribution about the spec-



